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Abstract

In this paper, we present a scheme for face authentication by
using applying principal component analysis (PCA) to model
variations. To deal with variations, such as facial expressions
and registration errors, with which traditional appearance-
based methods do not perform well, we propose the eigenflow
approach. In this approach, the optical flow and the optical
flow residue between a test image and a well-registered image
in the training set are first computed. The optical flow is then
fitted to a model that is pre-trained by applying PCA to
optical flows resulting from facial expressions and
registration errors for the subjects. The eigenflow residue,
optimally combined with the optical flow residue using linear
discriminant analysis (LDA), determines the authenticity of
the test image. Experimental results show that the proposed
scheme outperforms the traditional methods in the presence of
facial variations.

1. Introduction

For decades human face recognition has drawn
considerable interest and attention from many researchers [1].
A general statement of this problem can be formulated as
follows. Given still or video images of a scene, identify one or
more persons in the scene using a stored database of faces [2].

Face authentication [3] is a research field related to face
recognition. The difference between face recognition and face
authentication is that, in the former, the system has to
determine the identity of the subject, while in the latter, the
system only needs to verify the claimed identity of the user.
Usually similar algorithms can be used for both recognition
and authentication.

A comprehensive survey of human and machine recognition
techniques can be found in [2][5][6]. There are mainly two
kinds of face recognition systems: one is based on feature
matching; the other is based on template matching. In the
latter, applying PCA in the pixel domain (also known as
eigenface approach [7]) plays a fundamental role. Several
papers propose revised eigenface approaches to dealing with
face image variability [8]. Some researchers have noted that
applying PCA to image pixels directly is very sensitive to shift,
rotation, scale, expression or lighting variations of face [4],
which is because the eigenface method is basically an
appearance based approach.

In this paper, we propose a general approach to performing
face authentication by modeling different kind variations, such

as facial expression variations and shift, rotation, scale type of
registration errors. Optical flow is used to capture face
appearance motion when there is variation in facial expression.
For example, the optical flow between the neutral and happy
expression of one subject tells us how this subject smiles.
After we apply PCA to optical flows, we obtain an eigenspace
spanned by its eigenvectors, that we call eigenflow in this
paper. This eigenspace models possible expression variations.
Optical flow and eigenflow can also be used to model other
variations, such as registration error, shift, scale, and rotation.
As a general framework, we can also model the illuminant
variations by computing the features for images under different
lighting conditions, and performing PCA on these features.

Optical flow methods are generally used for motion
analysis. Some researchers have used optical flow in the
analysis of human expression for the purpose of expression
recognition [9][10]. Also Kruizinga and Petkov [11] proposed
to utilize optical flow in person identification. However, they
only considered the optical flow residue as the measurement of
classification, while we propose to make use of the eigenflow
residue, which appears to exhibit more classification ability
than the former.

Essentially optical flow can provide us the visual motion
information about face images. Moghaddam et. al also
proposed modeling visual motion in [12]. They determine
pixel difference between images, and utilize the Bayesian
approach to modeling the pixel difference for all the subjects.
In our case, first the optical flow is used to obtain motion field
between images and then PCA is applied to model facial
motion for individual subject.

This paper is organized as follows. In Section 2, we
introduce the individual eigenspace. In Section 3, we present
the individual eigenflow based approach in detail. Experiments
based on different sets are presented in Section 3. Finally in
Section 4, we provide the conclusions.

2. The individual eigenspace

Turk and Pentland [7], introduced the eigenface approach
to performing face recognition. While constructing an
eigenspace, face images from all training subjects are used.
We call the resulting eigenspace a universal eigenspace. We
can see that this eigenspace represents not only the personal
identity, the inter- variation between different training
subjects, but also the intra- variation of each subject, such as
due to expression changes, illumination variability, age, etc.
However, what we need for the authentication is robustness to



expression and illumination variations within a single subject,
not robust recognition for all the subjects. This observation
suggests one potential metric for face authentication. The
residue of a test vector to that vector’s individual eigenspace,
(i.e., the squared norm of the difference between a test vector
and its representation in the eigenspace) is a good measure for
authentication.

Throughout the rest of this paper, we will focus for
simplicity on one specified subject. So for a training set of K
subjects and M images for each subject, the same approach can
be repeated K times. In the individual eigenspace approach,
one eigenspace is constructed for each training subject. As the
following equation indicates, the average face will be different
for each subject.
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Now each face differs from the average by the vector
gfs iijij −= . Also the A matrix is different for each subject,

i.e., ],...,,[ 1,1,0, −= Miiii sssA . Here we denote the eigenvector of

each space as ni,u , and each face is projected to its own

eigenspace as follows:
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So far we have suggested an individual eigenspace for each
subject, and each training face (with its claimed identity) has

corresponding projected eigencoefficients, nw , in its own

eigenspace. From these projected vectors, the face image can
be reconstructed by:
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Where Q is the number of eigenvectors in the eigenspace.
Since this eigenspace is only an idealized representation for
one subject, it cannot represent all manifestations of that
subject’s face perfectly, i.e. there will be a residue (i.e.,
difference or squared error) between the test image and its
reconstructed version.

The residue is defined as the squared distance between the
mean-adjusted test input image igfs −= and reconstructed

image ŝ , i.e.,
2

ŝs −=e (4)

In the next section, we will call e the eigenflow residue
since it characterizes how well the eigenspace can model the
unknown sample.

2. Individual Eigenflow Based Face Authentication

The traditional eigenface approach is not as robust as
needed to expression variations and to shift, rotation, and scale
changes. Because PCA is an appearance-based approach, its
authentication performance will degrade quickly when the
appearance of a subject’s face changes significantly, which

occurs in the presence of expression changes and registration
errors. In this section, we propose a new method based on
optical flow to deal with such variations in face images.

2.1 Optical flow for face images

Essentially optical flow [15] is an approximation of the
velocity field. It characterizes approximately the motion of
each pixel between two images.

If two face images, which show different expressions of the
same subject, are fed into the optical flow algorithm, the
resultant motion field will emphasize the regions of facial
features, such as eyes and mouth. This is illustrated in Figure
1. The left half of the figure shows two face images from the
same subject, but with different expressions. The resulting
optical flow is shown below these figures. Also by using the
first image and the optical flow, we can construct a predicted
image that is close to the second image. The third figure in the
top row is the difference between prediction obtained via the
optical flow and the second image. We call it optical flow
residue image. For the correct subject, this residue image
would have low energy because the motion of most pixels can
be modeled well by the optical flow. The second set shows the
same except that the two input images are from two different
subjects. Obviously, the optical flow looks more irregular
when the two images are from different subjects. Also the
residue image of motion prediction has more “error”. These
two clues can help discriminating these two cases, which is the
task of authentication.

The same idea can be applied to images with registration
errors. Because the traditional eigenface approach is
unacceptably sensitive to registration errors, even small shifts
in input images can make the system performance degrade
significantly. However, face images are usually difficult to
register precisely, especially in a live authentication system. So
here we want to use the optical flow to build a system that is
tolerance to different kinds of registration errors. The second
image in the left column of Figure 2 is an up-shifted version of
the first image. The optical flow shown below captures most of
its motion around facial features, and also the residue image
has small intensity. The right column shows images of
different subjects leading to an optical flow that appears to be
random, and the residue image has larger intensity.

2.2 The training of eigenflow

Since the optical flow provides a useful pattern for
classifying personal identity, we propose to use PCA to model
this pattern.

Given two face images, there are some recommended
preprocessing steps prior to the optical flow determination.
Since some regions of face images will always contain
background, it is better to crop the image before the optical
flow computation.



Figure 1 Application of optical flow to cases of different expressions

Figure 2 Application of optical flow to two cases of different registration.

Figure 3 Five expression images used for training eigenflow.



Figure 4 The first three eigenflows trained from expression images of one subject. Some prominent movement of facial
features, such as mouth corner, eyebrow, scale, nasolabial furrow, can be seen from them.

Following the traditional PCA approach, optical flow
vectors are regarded as sample vectors for training. Suppose
that in the training dataset, there are a few images with
different expressions for each subject, such as five images
shown in Figure 3. Using these images, twenty optical flow
images (corresponding to twenty pairs) can be obtained. The
three principal eigenflow images of twenty optical flow images
are shown in Figure 4. Obviously large motion can be
observed in the region of facial features, such as mouth corner,
eyebrow, nasolabial furrow. So all the expression variations
occurring in a single subject can be represented by a space
spanned by these eigenflows. In contrast, the optical flow
between this subject and other subjects cannot be represented
well by this space.

Similarly eigenflows can be used to model the optical flow
caused by image registration errors. In the live application of
face authentication, face region needs to be registered from a
whole frame. Usually it is done via a crop operation based on
the location of two eyes. In our approach, we synthesize
images with registration errors from one well-registered image.
Again the eigenflows can indicate the actual motion pattern
appearing in the training set.

In the testing stage, both the optical flow residue and the
eigenflow residue will be used for authentication, where the
optical flow residue is computed in determining optical flow
between the testing image and training images, and the
eigenflow residue is obtained in projecting the optical flow
into the eigenflow space. Eventually linear discriminant
analysis [13] will combine these two residues and obtain the
final measurement for authentication.

3. Experiment Results

Experiments and evaluations are important parts of any
face authentication system. In order to isolate the effects of

facial expression variations and registration errors, we assume
that all the training and test images are captured under the
same lighting condition.

Before discussing the results, we will present some details
about our algorithm. Given any two training images, we
generate the optical flow using four steps. First the background
regions below the cheek in the face image are removed
because the background seems to affect the optical flow
calculation, and thus interferes with the authentication. Zero is
filled into the two triangle regions in the lower part of the face
square. Next, we determine the optical flow using Lucas-
Kanade algorithm[20]. Third the optical flow is down sampled
to be half its original size in order to speed up the PCA
training and to clean up the noisy motion vectors. Finally
within this smaller-size optical flow, the background and four
side boundaries are removed because usually the boundary
does not result in accurate motion estimation in the optical
flow algorithm. Now the down-sampled optical flow image can
be scanned into a vector, whose dimension is much lower than
the unsampled one.

The first data set has only expression variations. 13
subjects are included in this set. Each has 5 images for
training, and 70 images for testing. The reason we use more
test images than training images is that we want to get a
smother ROC curve. Also, only a few images may be available
for training in a practical setup. Each of the five training
images represents different expressions, such as neutral,
happy, angry, sad, and surprise. All of these images are well
registered by the location of the eyes. Here we implement
three algorithms: the individual PCA approach on image
domain, the universal PCA approach, and the individual
eigenflow approach. From the result, we can see that for most
part of the curve, our approach yields better performance. Also
the improvement is significant compared to the universal PCA
approach.



Receiver Operating Characteristic: Expression
dataset
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Receiver Operating Characteristic:
Registration error dataset
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Figure 5 The experiment results on the expression dataset.
Figure 6 Experiment results on the data set with registration errors.

The second data set has the registration variation for each
subject. Given one well-registered face image, we synthesize
625 images by cropping face region based on 25 points around
the eye locations. These images are used for training one
subject. The same method is used to generate the 625 test
images except there is larger offset while selecting the eye
neighbors, which means test images have larger registration
errors than training one. So all these synthesized training
images can represent different kinds of registration errors.
Based on this set, the eigenflow-based approach has shown
much better performance than the PCA approach.

The third data set has both expression variations and
registration errors. First, for each one of the 13 subjects, 5
expression images are obtained to be the reference images.
Then, for each reference image, 624 images can be synthesized
to include all kinds of registration errors. Thus, 3125 images
are collected for each subject. We also generate 3120 test
images for each subject using the same approach, but there are
two differences. One is that all the test images have different
expressions compared to the reference images. The other is
that the testing images have larger registration errors than the
training one.

Since in this experiment, we have many more test images
than in the previous two experiments, the denominator in

computing FAR and FRR will be much larger. That is why a
much smoother ROC curve can be observed from Figure 7.

Receiver Operating Characteristic: Expression
variation and registration error dataset
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Figure 7 Experiment results on the data set containing both
expression variations and registration errors.

5. Conclusions
In this paper, we present a scheme for face authentication by

modeling variations via applying principal component analysis
(PCA). To deal with variations, such as facial expressions and



registration errors, with which traditional appearance-based
methods do not perform well, we propose the eigenflow
approach. In this approach, the optical flow and the optical
flow residue between a test image and a well-registered image
in the training set are first computed. The optical flow is then
fitted to a model that is pre-trained by applying PCA to optical
flows resulting from facial expressions and registration errors
for the subjects. The eigenflow residue, optimally combined
with the optical flow residue using linear discriminant analysis
(LDA), determines the authenticity of the test image.
Experimental results show that the proposed scheme
outperforms the traditional methods in the presence of facial
variations.

The advantage of this proposed approach is its tolerance to
different kinds of variations, such as expression variations and
registration errors, because all these variations have been
modeled by PCA. As a general framework, our method can
also been extended to model other variations that appear in
faces, such as illuminants, poses.
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