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Abstract 
Face verification is an important tool for authentication of 
an individual and it can be of significant value in security 
and e-commerce applications. This paper deals with the 
application of correlation filters [1] for face verification. 
The performance of a specific type of correlation filter 
called the minimum average correlation energy (MACE) 
filter [2] is evaluated using a facial expression database 
collected at the Advanced Multimedia Processing Lab at 
Carnegie Mellon University (CMU). A comparison of veri-
fication performance between the correlation filter method 
and Individual Eigenface Subspace Method (IESM) is also 
presented. It is seen that these correlation filters offer sig-
nificant potential for face verification. 

Keywords 
Correlation filters, minimum average correlation energy 
(MACE), face verification, eigenfaces, authentication. 

INTRODUCTION 
Correlation filters have been applied successfully to 

automatic target recognition (ATR) [3] problems. The most 
basic correlation filter is the matched spatial filter (MSF), 
whose impulse response (in 2-D, point spread function) is 
the flipped version of the reference image.  While the MSF 
performs well at detecting a reference image corrupted by 
additive white noise, it performs poorly when the reference 
image appears with distortions (e.g., rotations, scale 
changes). Thus one MSF will be needed to detect each ap-
pearance of an object. Clearly this is computationally unat-
tractive for practical pattern recognition. Hester and 
Casasent [4] addressed this challenge with the introduction 
of the synthetic discriminant function (SDF) filter. The SDF 
filter is a linear combination of MSFs where the combina-
tion weights are chosen so that the correlation outputs cor-
responding to the training images would yield pre-specified 
values at the origin. These pre-specified peak values are 
often referred to as peak constraints. The peak values cor-
responding to the authentics (also called the true class) are 
typically set to 1, and hence this SDF filter was known as 
the equal correlation peak (ECP) SDF filter. In principle, a 
single ECP SDF filter could replace many MSFs.  

Object recognition is performed by cross-correlating an 
input image with a synthesized template or filter and proc-
essing the resulting correlation output. Figure 1 shows 
schematically how the cross-correlation is implemented 
efficiently using Fast Fourier Transforms (FFTs). The cor-

relation output is searched for peaks, and the relative 
heights of these peaks are used to determine whether the 
object of interest is present or not. The locations of the 
peaks indicate the position of the objects. 
 

 
Figure 1. Block diagram showing the correlation  

process 

 
Although the ECP SDF filter produces pre-specified corre-
lation peak values, it also results in large sidelobes. Some-
times these sidelobes are larger than the pre-specified peak 
values leading to misclassifications. The reason for this is 
that ECP SDF design controls only the correlation values at 
the origin and nowhere else. 
 

MINIMUM AVERAGE CORRELATION ENERGY 
(MACE) FILTER 

In an effort to reduce the large sidelobes observed from 
the ECP SDF filter, Mahalanobis et al [2] developed the 
minimum average correlation energy (MACE) filter. 
MACE filter minimizes the average correlation energy 
(ACE) of the correlation outputs due to the training images 
while simultaneously satisfying the correlation peak con-
straints at the origin. The effect of minimizing the ACE is 
that the resulting correlation planes would yield values 
close to zero everywhere except at the location of a trained 
object, where it would produce a strong peak. Resulting 
MACE filter is as follows in a vector form: 

 
hMACE = D-1 X (X + D-1 X) -1 c    (1) 
 
Suppose that we have N training images from the true 

class with each image having d pixels in it. We perform 2-D 
FFTs on these images and convert the 2-D FFT arrays into 
1-D column vectors by lexicographic ordering. These vec-
tors are the column vectors of the d N×  matrix X in Eq. 



(1). Column vector c with N elements contains the pre-
specified correlation peak values of the training images and 
the d d× diagonal matrix D contains along its diagonal the 
average power spectrum of the training images (i.e., aver-
age of the magnitude squares of the columns of X). Note 
that the synthesized hMACE is a column vector with d ele-
ments and the 2-D correlation filter is obtained by reorder-
ing the column vector back to a 2-D array. Throughout this 
paper we shall use the following notation: uppercase, bold 
letters indicate matrices and lowercase bold letters denote 
column vectors. The + symbol represents the complex 
conjugate transpose and * denotes the complex conjugate. 

 

DATABASE USED FOR FACE VERIFICATION  
The computer simulations described in this paper util-

ize a facial expression database collected at the Advanced 
Multimedia Processing (AMP) Lab at the Electrical and 
Computer Engineering Department of CMU [5]. The data-
base consists of 13 subjects, whose facial images were cap-
tured with varying expressions. Each subject in the database 
has 75 images of varying facial expressions.  The faces 
were captured in a video sequence where a face tracker [6] 
tracked the movement of the user’s head and based upon an 
eye localization routine and extracted registered face im-
ages of size 64x64. Example images are shown in Fig. 2. 

 

 
Figure 2.  Sample images from the Advanced Multime-

dia Processing Lab’s facial expression database. 

 

FACE VERIFICATION USING MACE FILTERS 
We have evaluated, using the above facial expression 

database, the performance of MACE filter for face verifica-
tion. The computer simulation proceeded as follows. A sin-
gle MACE filter was synthesized for each of the 13 per-
sons using a variable number of training images from that 
person. In the test stage, for each filter, we performed cross 
correlations with all the face images from all the people 
(i.e., 13 x 75 = 975 images). For authentics, the correlation 
output should be sharply peaked and it should not exhibit 
such strong peaks for impostors. Peak to sidelobe ratio 
(PSR) defined below is used to measure the peak sharpness.  

 

σ
meanpeak −=PSR                                                (2) 

 

Figure 3 illustrates how the PSR is estimated. First, the 
peak is located (shown as the bright pixel in the center of 
the figure). The mean and the standard deviation of the 
20x20 sidelobe region (excluding a 5x5 central mask) cen-
tered at the peak are computed. The PSR is the ratio of 
(peak-mean) to standard deviation as shown in Eq. (2). 

 

 
Figure 3. This figure shows how the peak to side lobe 

ratio (PSR) is estimated.  

 

 

        
Figure 4. Correlation outputs when using a MACE filter 

designed for Person A.  (Top): Input is a face image 
belonging to Person A.  (Bottom): Input is a face image 

not belonging to Person A . 

 

Figure 4 (top) shows a typical correlation output for an 
authentic face image. Note the sharp correlation peak re-
sulting in a large PSR value of 37. The bottom correlation 
output in Fig. 4 shows a typical response to an impostor 
face image exhibiting low PSRs (<10).  

We first used only 3 training images for the synthesis 
of each person’s MACE filter. These three images were at a 
uniform interval in order to capture some of the expression 



variations in the dataset (e.g., images # 1, 21 and 41). To 
evaluate the performance of each person’s MACE filter, 
cross-correlations of all the images in the dataset were com-
puted using a person’s MACE filter resulting in 13*75=975 
correlation outputs (corresponding to 75 true class images 
and the 900 false class images) and the corresponding PSRs 
were measured and recorded.  

 
Figure 5 shows the best MACE filter PSR performance 

(upper plot, Person 1), and the worst PSR performance 
(lower plot, Person 2) as a function of image index. PSRs of 
authentics are shown in solid line and those of impostors 
using dotted lines.  
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Peak-to-sidelobe ratio performance for Person 1
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Figure 5. (Top): PSRs for Person 1, and   

 (Bottom): PSRs for Person 2. 

 
One very important observation from all 13 PSR plots  

(we showed only two PSR plots in Fig. 5) is that all the 
false class images (12*75=900) yielded PSR values consis-
tently smaller than 10 (those are the dotted lines at the bot-
tom of the plot) for all 13 subjects. The three ‘x’ symbols 
indicate the PSRs for the three training images used to syn-
thesize the MACE filter for that person, and as expected 
they yield high PSR values. Person 2 whose filter yields the 
worst performance (exhibiting the smallest margin of sepa-

ration between the true and false class PSR values), sug-
gests that the expected distortions in the test set were not 
adequately captured by the training set, and indeed a close 
look at the dataset shows that person 2 exhibits significantly 
more variation in facial expressions than others. Thus more 
training images may be needed to improve authentication of 
face images belonging to person 2. Nevertheless even per-
son 2’s filter designed using only 3 training images per-
formed reasonably well yielding a 99.1% verification per-
formance. 

 
Table 1 Error percentages for all 13 MACE filters syn-

thesized using only 3 training images. 
Person  1 2 3 4 5 6 7 8 9 10 11 12 13 

FAR, FRR=0 0 1.3 0 0 1 0 0 0 0 0 0 0 0 

EER 0 0.9 0 0 1 0 0 0 0 0 0 0 0 

FRR, FAR=0 0 0.2 0 0 2.6 0 0 0 0 0 0 0 0 

 

Table 2 Error percentages for all 13 MACE filters syn-
thesized using the first 5 training images. 

Person  1 2 3 4 5 6 7 8 9 10 11 12 13 

FAR, FRR=0 0 2.4 0 0 0 0 0 0 0 0 0 0 0 

EER 0 1.3 0 0 0 0 0 0 0 0 0 0 0 

FRR, FAR=0 0 2.6 0 0 0 0 0 0 0 0 0 0 0 

 

Table 1 shows the error rates achieved using MACE 
filters designed from only 3 training images. FAR, FRR and 
EER refer to false acceptance rate, false rejection rate and 
equal error rate, respectively. EER is the case when FRR 
equals FAR. Table 1 shows that the overall EER (13 filters 
each tested on 975 images) is only 0.15% from MACE fil-
ters designed from only 3 training images per person.  

 
We also performed a similar experiment using the first 

5 training images from each person in the dataset to design 
that person’s filter. These 5 images exhibit a different range 
of variability and have been placed there out of sequence. 
Table 2 summarizes the results of using 5 training images 
per person. There is some improvement in that Person 5 is 
now 100% correctly classified. However, class 2 gives 
1.3% EER for an overall EER of 0.1%. 

 

 
Figure 6.  PSR plots for Person 1 (left), Person 2 (right) 

for MACE filters designed from  25 training images. 

 
Another simulation was performed where we increased 

the size of the training dataset size to 25 face images per 



person sampled at regular intervals of the 75-image video 
sequence. Figure 6 shows the PSR plots for Person 1 (left) 
and Person 2 (right) for MACE filter synthesized from 25 
training images. This figure shows a larger margin of sepa-
ration than in the previous cases. In this case, the 13 MACE 
filters yielded 100% verification for all people. 
 

Although we have shown that the verification accuracy 
of the MACE filters increases as more training images are 
used for filter synthesis, it is attractive that this method can 
work well with as few as 3 training images per class for this 
database. 

 

INDIVIDUAL EIGENFACE SUBSPACE METHOD 
Turk and Pentland introduced the eigenface method [7] 

for performing face recognition. This approach used the 
training faces from all the people to compute a universal 
eigenface subspace. While such a universal subspace is 
optimal for representing all the people’s training faces in 
the minimum mean squared error sense, it may not ade-
quately capture or describe the detailed information that 
discriminates one person’s face from another. A better ap-
proach for face verification may be to use each person’s 
training faces to build an individual eigenface subspace [8].  

Let fi,n denote the d-element column vector represent-
ing the n-th face image from the i-th person. Then the mean 
vector and the covariance matrix representing the i-th per-
son are as follows. 
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Then eigenvectors ei,j and eigenvalues λi,j are computed 
from the covariance matrix Ci. More details of this method 
can be found in [9] and efficient ways to calculate these 
eigenvectors are described in [10]. Since each individual’s 
orthonormal eigenface basis best spans that person’s faces, 
we test input face images as follows. We first project the 
test image on to each person’s individual eigenface sub-
space, then reconstruct the face ri,j as shown in Eq. (5) us-
ing the projection coefficients in that subspace and finally 
measure the residual error between the original test input 
face image and the reconstructed face image.  
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In Eq (5), M denotes the number of eigenvectors used to 
span the i-th class eigenface subspace. M is chosen to keep 
the average reconstruction squared error of the training im-
ages spanned by the M-eigenvectors basis.  

∑
=

M

k i

ki

T
1

,λ
 >  R           (6) 

Where ,
1

N

i i k
k

T λ
=

=∑ and where ,i kλ  denotes the i-th class 

eigenvalues, arranged in decreasing magnitude. Typically 
we choose M so that the squared reconstruction error is 1%, 
i.e., R = 0.99. The reconstruction error is the squared norm 
between the test image fi,j and its reconstruction ri,j. 

Err =
2

,, jiji rf −     (7)  

 
An authentic face image and its expression variations 

are expected to be modeled well in its individual eigenface 
subspace; thus leading to small residual errors. Similarly, 
impostor face images are not well represented by some one 
else’s individual eigenface subspace and should result in 
larger residual errors. 

 

FACE VERIFICATION USING INDIVIDUAL EIGEN-
FACE SUBSPACE METHOD (IESM) 
       To provide a benchmark of the MACE filter verifica-
tion performance, we repeated the face verification experi-
ment using the same training images as before, but this time 
using the individual eigenface subspace method. For each 
person’s eigenface subspace, we projected all the face im-
ages from each person and reconstructed the face images to 
record the reconstruction error. Experiments were per-
formed using 3, 5, and 25 training images per person. 
 

  
Figure 7. Reconstruction error plot for Person 1’s 

individual eigenface subspace 
 
Figures 7 and 8 show reconstruction errors for Person 1 

and Person 2, respectively as a function of image index 
while using individual eigenspaces constructed using with 
n=3 training images per person. The solid line here repre-
sents the reconstruction error of faces belonging to the au-
thentic person, while the dotted lines represent the recon-



struction errors from the impostors. Each dotted line repre-
sents a particular false class person.   
 

 
Figure 8. Reconstruction errors for Person 2’s individ-

ual eigenface subspace 

 

Table 3  Error percentage for all 13 individual eigenface 
subspaces using 3 training images per person  

Person 1 2 3 4 0 6 7 8 9 10 11 12 13 

FAR, FRR=0 0 5.3 2.6 0 0 0 0 7.6 0 0 0 0 0 

EER 0 3.5 2.1 0 0 0 0 5.4 0 0 0 0 0 

FRR, FAR=0 0 8 10.6 0 0 0 0 14.7 0 0 0 0 0 

 

Table 4 Error percentage for all 13 individual eigenface 
subspaces using 5 training images per person  

Person 1 2 3 4 5 6 7 8 9 10 11 12 13 

FAR, FRR=0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 

EER 0 0 0 0 0 0 0 1.3 0 0 0 0 0 

FRR, FAR=0 0 0 0 0 0 0 0 9 0 0 0 0 0 

 

Tables 3 and 4 show the error percentages for all 13 classes 
using the individual eigenface subspace method. In Table 3, 
the average EER is 0.85% which is higher than the 0.15% 
obtained from the MACE filters designed from only 3 train-
ing images per person. Table 4 shows that the IESM 
method achieves the same EER of 0.1% as the MACE filter 
synthesized using 5 training images per person. It appears 
that the MACE filter yields smaller FRR,FAR=0, 
FRR=0,FAR values. We also repeated the IESM simula-
tions using 25 training images, and it was observed that 
100% verification performance on this data set was also 
achieved using the IESM method. Figure 9 shows the re-
construction errors for IESM based on 25 training images. 
There is a larger margin of separation for Person 2 yielding 
100% verification performance. 

 

 
Figure 9.  Reconstruction Errors for IESM using 25 

training images of Person 1 (left) and Person 2 (right)  

 

DISCUSSION 
We have shown results using MACE correlation filter ap-
proach to performing face verification and compared it to 
the individual eigenface subspace method. MACE has 
shown to perform better with fewer images. However, error 
rates do not convey the full story and it is instructive to 
view the plots of the measured feature (e.g., the PSRs and 
the reconstruction residual errors) and examine the margins 
of separations. Figures 5 and 6 for the MACE filter show 
that the PSR values for the impostor faces seem bounded 
below a fixed threshold regardless of the person (i.e., all 
impostor PSRs are smaller than 10). In contrast, for the 
IESM method, the impostor reconstruction residue errors 
exhibit larger variations sometimes leading to smaller mar-
gins of separation between the true and false classes. The 
larger the margin of separation, the more confidence we 
have in the system to handle larger variations of the true 
class faces beyond that seen in the training set (e.g., possi-
bly due to lighting variations which is a common hurdle in 
many face verification systems). 

CONCLUSION 
This paper has provided a short overview of the application 
of correlation filters to face verification, focusing mainly on 
how MACE correlation filters can be used. The simulation 
results shown are promising, demonstrating that correlation 
filters can be an alternative solution for performing face 
verification. Advantages of the correlation method include 
shift-invariance and ability to suppress impostor faces using 
a universal threshold. We are currently improving the filter 
design methods and testing the correlation filters on the 
much larger PIE [11] (pose, illumination and expression) 
database collected at CMU. Results of this investigation 
will be presented in the near future. 
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